Структура контрольной работы

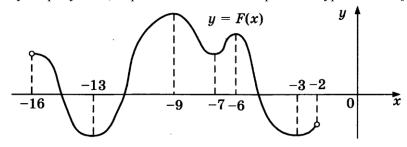
На выполнение контрольной работы по математике дается 2 часа. Работа состоит из двух частей. Первая часть содержит 10 заданий. К каждому заданию B1-B10 требуется дать краткий ответ. Задания C1, C2 выполняются на отдельном листе и ученик записывает подробное, обоснованное решение.

За выполнение каждого задания ученик получает определенное число баллов: задания B1-B10 оцениваются в 1 балл, C1-2 балла, C2-3 балла.

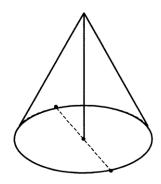
Таблица перевода тестовых баллов в школьные отметки.

Тестовый балл	Школьная отметка				
0-4	2				
5-8	3				
9-11	4				
12-15	5				

ОТВЕТЫ


Вариант	B 1	B2	В3	B4	B5	B6	B 7	B8	В9	B10	C 1	C2
1	2	-26x +	2	0,02	-7	32	1000	4	60	-5	15/4	(0; 4)
2	2	- 0,5x+ 23,5	6	0,1	7	175	500	864	120	-1	2 или 14	(1; 3)
3	2	- x ²	10	0,48	8	6	30	10	21	20	arctg 3 или arctg 21/17	3
4	2	$-18 x^2 + 9x - 5$	10	0,05	8,75	15	2	51	32	-7	400 π	[-2;1); (- 1;0); (0;1);(1; 2]

Итоговая контрольная работа


Вариант 1 Часть I

- В1. Найдите значение выражения $\log_4 104 \log_4 6.5$
- В2. Найдите остаток от деления многочлена $f(x) = 13 x^3 + 67 x^2 3x + 4$ на многочлен $P(x) = x^2 + 5 x + 1$.
- В3. На рисунке изображен график первообразной y = F(x) некоторой функции y = f(x), определенной на интервале (16; 2).

Пользуясь рисунком, определите количество решений уравнения f(x) = 0 на отрезке [-15; -8].

- В4. Валя выбирает случайное трехзначное число. Найдите вероятность того, что оно делится на 51.
- B5. Решите уравнение $5^{x+5} = 0.04$.
- В6 Высота конуса равна 30, а длина образующей 34. Найдите диаметр основания конуса.

В7. Коэффициент полезного действия некоторого двигателя определяется формулой $\eta = \frac{T_1 - T_2}{T_1} \cdot 100\%$.

При каком наименьшем значении температура нагревателя T_1 (в градусах Кельвина) КПД этого двигателя будет не меньше 80%, если температура холодильника $T_2 = 200$ К?

- В8. Объем цилиндра равен 12см 2 . Чему равен объем конуса, который имеет такое же основание и такую же высоту, как и данный цилиндр?
- В9. Два автомобиля отправляются в 420 километровый пробег. Первый едет со скоростью на 10 км/ч большей, чем второй, и прибывает к финишу на 1 час раньше второго. Найти скорость автомобиля, пришедшего к финишу вторым.
- B10. Найдите наименьшее значение функции $y = (x^2 9x + 9) e^{x-7}$ на отрезке [6; 8].

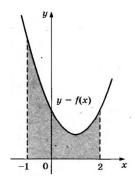
- С1. Радиус основания конуса равен 8, а его высота равна 15. Плоскость сечения содержит вершину конуса и хорду основания, длина которой равна 14. Найдите расстояние от центра основания конуса до плоскости сечения.
- С2. Решите систему неравенств

$$\begin{cases} \log_{x^3+6x^2+12x+8} \left(5-x\right) \geq 0, \\ \frac{2}{x^2-4x} + \frac{1}{x^2-10x+24} \leq 0. \end{cases}$$

.

Итоговая контрольная работа

Вариант 2 Часть I

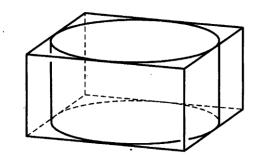

Найдите значение выражения $\frac{\log_8 14}{\log_{64} 14}$.

- В2. Найдите остаток от деления многочлена $f(x) = x^3 11x^2 + x + 7$ на многочлен $P(x) = 2x^2 + 3$.
- В3. На рисунке изображен график первообразной

некоторой функции y = f(x). Одна из первообразных этой функции равна

$$F(x) = \frac{1}{3}x^3 - x^2 + 2x - 5$$
. Найдите площадь

заштрихованной фигуры.


- В4. В фирме такси в данный момент свободно 10 машин: 5 черных, 1 желтая и 4 зеленых. По вызову выехала одна из машин, случайно оказавшаяся ближе всего к заказчику. Найдите вероятность того, что к нему приедет желтое такси.
- B5. Решите уравнение $2^{5-x} = 0.25$.
- В6. В сосуд, имеющий форму конуса, налили 25 мл жидкости до половины высоты сосуда (см. рис.) Сколько миллилитров жидкости нужно долить в сосуд, чтобы заполнить его доверху?

В7. Коэффициент полезного действия некоторого двигателя определяется формулой $\eta = \frac{T_1 - T_2}{T_1} \cdot 100\%$,

 T_1 - температура нагревателя (в градусах Кельвина) , T_2 - температура холодильника (в градусах Кельвина) При какой температуре нагревателя T_1 КПД двигателя будет 45%, если температура холодильника T_2 = 275 К? Ответ выразите в градусах Кельвина.

В8. Цилиндр вписан в прямоугольный параллелепипед. Радиус основания и высота цилиндра равны 6. Найдите объем параллелепипеда.

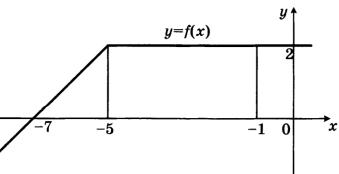
- В9. Из пункта А круговой трассы, длина которой равна 30 км, одновременно в одном направлении стартовали два автомобилиста. Скорость первого равна 92 км/ч, скорость второго 77 км/ч. Через сколько минут первый автомобилист будет опережать второго ровно на 1 круг?
- В10. Найдите набольшее значение функции $y = (21 x) e^{20-x}$ на отрезке [19; 21].

Часть II

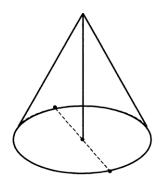
- С1. Диаметр окружности основания цилиндра равен 20, образующая цилиндра равна 28. Плоскость пересекает его основания по хордам длины 12 и 16. Найдите тангенс угла между этой плоскостью и плоскостью основания цилиндра.
- С2. Решите систему неравенств

$$\begin{cases} \log_{x^{3}+3x^{2}+3x+1} (4-x) \geq 0, \\ \frac{1}{x^{2}-4x+3} + \frac{1}{x^{2}-10x+21} \leq 0. \end{cases}$$

Найдите значение выражения $\log_6 144 - \log_6 4$. B1


В2. Найдите остаток от деления многочлена

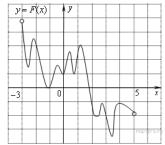
$$f(x) = x^3 + x$$


$$f(x) = x^3 + x$$
 на многочлен $p(x) = x^2 + x + 1$

В3. На рисунке изображен график некоторой функции y = f(x). Пользуясь рисунком, вычислите

- В4. В сборнике билетов по биологии всего 25 билетов, в 12 из них встречается вопрос по круглым червям. Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику попадется вопрос по круглым червям.
- B5. Решите уравнение $\left(\frac{1}{6}\right)^{6-x} = 36$.
- В6 Высота конуса равна 4, а длина образующей 5. Найдите диаметр основания конуса.

- В7. Температуру нагревательного элемента (в градусах Кельвина) в зависимости от времени (вминутах) можно вычислять по формуле $T(t) = T_0 + at + b t^2$, где $T_0 = 760 \, \text{K}$, $a = 34 \, \text{K/мин}$, b =-0,2 К/мин². Известно, что при температурах нагревателя свыше 1600 К прибор может испортиться, поэтому его нужно отключать. Определите, через какое наибольшее время (в минутах) после начала работы нужно отключать прибор.
- 88. Площадь боковой поверхности цилиндра равна 80π , а высота 8. Найдите диаметр основания.
- В9. Смешали 4 литра 15-процентного водного раствора некоторого вещества с 6 литрами 25-процентного водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?
- В10. Найдите наимбольшее значение функции $y = \ln(x + 5)^5 5x$ на отрезке [-4,5; 0].


- С1. Диаметр окружности основания цилиндра равен 26, образующая цилиндра равна 21. Плоскость пересекает его основания по хордам длины 24 и 10. Найдите угол между этой плоскостью и плоскостью основания цилиндра.
- С2. Решите систему неравенств

$$\begin{cases} 4^{x} - 12 \cdot 2^{x} + 32 \ge 0, \\ \log_{x}(x - 2) \cdot \log_{x}(x + 2) \le 0. \end{cases}$$

Итоговая контрольная работа

Вариант 4 Часть I

- B1. Найдите значение выражения $\left(7^{\log_7 5}\right)^{\log_5 2}$.
- В2. Найдите остаток от деления многочлена $f(x) = x^3 2x^4 5$ на многочлен $p(x) = x^3 9x$.
- В3. На рисунке изображён график функции y = F(x) и одной из первообразных некоторой функции f(x), определённой на интервале (-3;5). Пользуясь рисунком, определите количество решений уравнения f(x)=0 на отрезке [-2;4].

- В4. На чемпионате по прыжкам в воду выступают 40 спортсменов, среди них 7 прыгунов из Голландии и 2 прыгуна из Боливии. Порядок выступлений определяется жеребьёвкой. Найдите вероятность того, что первым будет выступать прыгун из Боливии.
- B5. Найдите корень уравнения: $16^{x-9} = \frac{1}{2}$.
- В6. Длина окружности основания цилиндра равна 7. Площадь боковой поверхности равна 105. Найдите высоту цилиндра.
 - В7 На верфи инженеры проектируют новый аппарат для погружения на небольшие глубины. Конструкция имеет форму сферы, а значит, действующая на аппарат выталкивающая (архимедова) сила, выражаемая в ньютонах, будет определяться по формуле: $F_A = \alpha \rho g r^3$, где $\alpha = 4.2$ постоянная, r радиус аппарата в метрах, $\rho = 1000$ м³ плотность воды, а g ускорение свободного падения (считайте g = 10 Н/кг). Каков может быть максимальный радиус аппарата, чтобы выталкивающая сила при погружении была не больше, чем 336000 Н? Ответ выразите в метрах.
 - В8 Диаметр основания конуса равен 136, а длина образующей 85 . Найдите высоту конуса.
 - В9. Из пункта А в пункт В одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью 24 км/ч, а вторую половину пути со скоростью, на 16 км/ч большей скорости первого, в результате чего прибыл в пункт В одновременно с первым автомобилем. Найдите скорость первого автомобиля. Ответ дайте в км/ч.
 - В10. Найдите наименьшее значение функции $y = e^{2x} 8e^x + 9$ на отрезке [0; 2].

C1. Две параллельные плоскости, находящиеся на расстоянии 12 друг от друга, пересекают шар. Получившиеся сечения одинаковы, и площадь каждого из них равна 64л. Найдите площадь поверхности шара.

С3. Решите систему неравенств

$$\begin{cases} 4^{x+1} - 17 \cdot 2^x + 4 \le 0, \\ \log_{|x|}^2(x^2) + \log_2(x^2) \le 8. \end{cases}$$